翻訳と辞書
Words near each other
・ Frobenioid
・ Frobenius
・ Frobenius algebra
・ Frobenius category
・ Frobenius covariant
・ Frobenius determinant theorem
・ Frobenius endomorphism
・ Frobenius Forster
・ Frobenius group
・ Frobenius Institute
・ Frobenius manifold
・ Frobenius matrix
・ Frobenius method
・ Frobenius normal form
・ Frobenius Orgelbyggeri
Frobenius pseudoprime
・ Frobenius solution to the hypergeometric equation
・ Frobenius splitting
・ Frobenius theorem
・ Frobenius theorem (differential topology)
・ Frobenius theorem (real division algebras)
・ Frobenius's theorem (group theory)
・ Frobenius–Schur indicator
・ Froberg mutiny
・ Froberville
・ Frobisher
・ Frobisher (Doctor Who)
・ Frobisher (surname)
・ Frobisher Bay
・ Frobisher Bay Air Base


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Frobenius pseudoprime : ウィキペディア英語版
Frobenius pseudoprime
In number theory, a Frobenius pseudoprime is a pseudoprime that passes a specific probable prime test described by Jon Grantham in a 1998 preprint and published in 2000.


It has been studied by other authors for the case of quadratic polynomials.


==Frobenius pseudoprimes w.r.t. quadratic polynomials==
Frobenius pseudoprimes are defined with respect to a fixed monic polynomial. The case of a degree-2 (quadratic) polynomial \scriptstyle x^2 - Px + Q, where \scriptstyle D = P^2-4Q is not a square, is common and can be expressed in terms of Lucas sequences U_n(P,Q) and V_n(P,Q), leading to fast implementations for testing pseudoprimality.
A composite number ''n'' is a Frobenius (P,Q) pseudoprime if and only if \textstyle\gcd(n,2QD)=1,
: (1) \qquad U_(P,Q) \equiv 0 \pmod n
and
: (2) \qquad V_(P,Q) \equiv \begin2Q\pmod n&\mboxk=-1\\2\pmod n&\mboxk=1\mbox\end
where \scriptstyle k=\left(\tfrac\right) is the Jacobi symbol.
Both conditions hold for all primes, hence this constitutes a probable prime test.
Condition (1) is the same condition that defines a Lucas pseudoprime, hence every Frobenius (P,Q) pseudoprime is also a Lucas (P,Q) pseudoprime, but because of the additional condition (2), the converse is not true.

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Frobenius pseudoprime」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.